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Instanton solutions in the problem of wrinkled flame-front dynamics
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The statistics of the slopes of wrinkling flames propagating through an infinitely wide channel is investigated
by the quantum-field-theory methods. We dwell on the WKB approximation in the functional integral, which
is analogous to the Wyld functional integral in turbulence. The main contribution to statistics is due to a
coupled field-force configuration. This configuration is related to a kink between metastable exact pole solu-
tions of the Sivashinsky equation. These kinks are responsible for both the formation of new cusps and the
rapid power-law acceleration of the mean flame front. The problem of asymptotic stability of the solutions is
discussed.
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I. INTRODUCTION

It had been shown in Ref.@1# that under a weakly nonlin
ear approximation, the dynamics of a wrinkled flames pro
gating through an infinitely wide channel is governed by
nonlinear partial differential equation~PDE!
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gUbL$F%. ~1!

Here,F is the interface of a distorted planar flame,Ub is the
speed of the planar flame relative to the burning gas,DM is
the Markstein diffusivity, andg is the thermal expansion
coefficient,

g5
~r f2rb!

r f
, ~2!

wherer f is the density of the fresh mixture andrb is the
density of the burned gas,r f.rb . Equation~1! is asymp-
totically exact in the limit of smallg!1. L$•••% represents
a linear singular nonlocal operator defined conveniently
terms of the spatial Fourier transform by

L:F̃~k,t !°2pukuF̃~k,t !,
~3!

F̃~k,t !5E
2`

1`

dk F~x,t !e2p ikx.

L is responsible for the Darrieus-Landau instability@2,3#.
Direct numerical simulations for Eq.~1! performed in

Ref. @4# show that even when the initial conditions are ch
sen to be smooth, the cusps develop on the flame interfac
time increases. When the integration domain is wide enou
the secondary randomlike subwrinkles arise on the interfa
Experimental studies reported in Ref.@5# show that under
usual experimental conditions the wrinkling process is
companied by the flame speed enhancement undergoin
acceleration in time}t3/2.
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Numerous analytical investigations devoted to Eq.~1! and
to its modified version pertinent to an outward propagat
flame display that in the limit of long times the local flam
dynamics is driven by the large-scale geometry@6–8#. Exact
solutions of Eq.~1! can be obtained in principle by using th
pole decomposition technique@9–11#. For such pole solu-
tions, Eq. ~1! formally reduces to a finite set of ordinar
differential equations~ODE’s! which describe the motion o
the poles in the complex plane. These poles are interprete
be related to the cusps observed in physical space. Howe
numerical and analytical results demonstrate convincin
that the solutions of the ODE’s do not resemble those
tained from the direct numerical integration of Eq.~1!. In
particular, the number of wrinkles obtained from the ODE
is independent of time and the corresponding~mean! expan-
sion of the front is much slower than thet3/2 power law.

In Refs.@12# and@13#, it was argued that the inconsisten
cies with the pole decomposition method lie in the stabil
of the exact pole solutions. The initial value problem of t
linearized PDE about a pole solution has been solved
merically; as a result they concluded that pole solutions
unstable for largeg. Consequently, they are not observed
experiments.

It was conjectured in Ref.@14# that nonlinearity alone is
not enough to meet the experimental observations and
the results of the spectral numerical integrations is due
computational noise. In Ref.@14# a model had been deve
oped, where pseudorandom forcing is included. It is sho
that many broad-banded exciting fields indeed lead to
rapid spawning of wrinkles.

The linear stability of the pole decomposition solutio
was discussed in Ref.@15# in detail. The exact analytica
expressions for the eigenvalues and eigenfunctions h
been constructed. Based on these expressions, in Ref.@15#,
they demonstrate that for any value of the parameterg there
exists the only asymptotically stable solution with the larg
possible~for this particular value ofg) number of poleNg .
As the parameterg increases, the equilibrium states of th
PDE undergo a cascade of bifurcations. In this way the n
solution with N poles gains stability while the former on
with N21 poles becomes unstable. However, the nonlin
©2001 The American Physical Society04-1
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D. VOLCHENKOV AND R. LIMA PHYSICAL REVIEW E 64 011204
stability and dynamics of cusps still remain an importa
open question within such an approach@15#.

In the present paper, we consider a pseudorandom fo
analogue of the equation governing the slope function
namics of the wrinkled flames propagated through an i
nitely wide channel by the field-theory methods. We use
pseudorandom forcing on the one hand as an origin of
spawning of wrinkles, on the other hand as a ground
application of the quantum-field-theory formalism. From t
very outset, we should stress that we address the asymp
solutions of thestochastic problembased on the slope func
tion equation, but not the exact solutions of this equation

We demonstrate that the main contribution to the statis
of slopes is given by a coupled field-force configurations
the instantons. These configurations are related directly to
very short-time ~practically instant! kinks between meta
stableground statesincident to different numbers of poles

The paper is organized as follows. In Sec. II, we form
late the stochastic problem for the equation governing
slope function dynamics of advancing flame fronts. The
fronts usually either form fractal objects with contorted a
ramified appearance or they wrinkle producing self-affi
fractals characterized with some critical exponent@16#. The
latter fact motivates the analysis of the problem from
point of view of critical phenomena theory, which is given
Sec. III.

We must say that in the actual problem, t
renormalization-group technique~which has proved itself so
well in the fully developed turbulence theory; the acti
there functional resembles the action of the present the
@17#, @18#! is ultimately ineffective since, obviously, the re
gime of critical scaling is not attained. One can hardly u
the concept of critical dimensions for the actual quantitie

The examples of successful application of the saddle p
calculations to the Burger’s equation@19# and to the descrip-
tion of intermittency phenomenon in turbulence@20# have
been given recently. These papers have inspired us to
ploy this technique in the problem of wrinkling flame front
The infinite set of instantonlike solutions we have found
dramatically dissimilar to those computed in Refs.@19# and
@20#.

In Sec. IV, we construct the statistical theory of wrinkl
based on the action functional relevant to the actual stoc
tic problem.

The minimization of action discussed in Sec. V requir
that the field and force be coupled in some particular c
figurations. We also illustrate the instanton mechanism
poles generation for the particular two poles initial config
ration. The process keeps repeating itself as time increa
We then conclude in the last section.

II. THE STOCHASTIC PROBLEM FOR THE EQUATION
GOVERNING THE SLOPE FUNCTION DYNAMICS

The stochastic problem for the equation governing
slope function dynamics of the flame front,u(x,t)
5]xF(x,t), with a Gaussian distributed pseudorandom fo
included on the right-hand-side reads as follows:
01120
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2u1 1

2 gUbL$u%1 f . ~4!

The pair-correlation function forf is taken in the form

^ f ~x,t ! f ~x8,t8!&5D f~x2x8!d~ t2t8!, ~5!

in which the functionD f(x2x8) is supposed to be an eve
smooth ‘‘bell’’-shaped function ofx. To be specific, we take
it in the form

D f~x!5
D0

p

m

x21m2
~6!

decaying at the ratem and turning intoD0d(x) as m→0,
whereD0 is a constant.

Equation~4! is similar to the Burger’s equation except th
singular term,}gUbL$u%. The homogeneous equation wit
no external forcing~4! is considered in Ref@9# in detail. In
particular, it was shown that it possesses a pole decomp
tion, i.e., it allows a countable number of uniform solution

u~x,t !522n (
i 52N

N
1

x2zi~ t !
, ~7!

in which zi ’s are poles in the complex plane~coming in
complex-conjugate pairs! moving according to the laws o
motion of poles

żi522n(
iÞ j

1

zi2zj
2 igUb sgn@ Im~zi !#, ~8!

where Im denotes the imaginary part of a pole. One c
derive easily the corresponding steady (żi50), solution of
the Sivashinsky equation for the simplest configurations c
cerning the minimal number of poles. For example, for tw
poles the only steady solution is given by

u(2)~x!52
4DMx

x21DM
2

, ~9!

and there are two possible four-pole steady configuration

u(4)~x!56
4DM~62x3127A2iD M

3 19A2iD Mx2!

2x4654A2iD M
3 x66A2iD Mx3181DM

4
.

~10!

We consider large-scale asymptotic solutions pertinent to
field theory ~11! undergoing a sequence of kinks betwe
different metastableground statesof the type~7!.

To construct the solutions with spawning wrinkles, w
exploit the exact correspondence between an arbitrary
chastic dynamical problem with the Gaussian distributed r
dom force and a quantum-field-theory@21#. A short and el-
egant proof had been given in Ref.@22#. The stochastic
problem ~4! and ~5! is completely equivalent to the field
theory of two fields with an action functional
4-2
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S@u,w#5 1
2 E dt dx dy w~x,t !D f~x2y,t !w~y,t !

2 i E dt dx wS ut1Ubuux2DMuxx

2
1

2
gUbL$u% D . ~11!

Here, w(x,t) is the auxiliary field, which comes into pla
instead of the random forcef. w(x,t) determines the re
sponse functions of the system, for instance, the line
response function iŝuw&.

III. THE ANALYSIS OF THE ACTION FUNCTIONAL
FROM THE CRITICAL PHENOMENA THEORY POINT

OF VIEW

In this section, we present a brief analysis of a quantu
field-theory specified by the action functional~11! from the
critical phenomena theory point of view. Such an outli
appears to be important since it would shed light on a qu
tion concerning the existence of a critical regime in the wr
kling flame-front propagation problem, i.e., that for any co
relation function of the theory~11! there is a definite stable
large scale long-time asymptotics.

We also stress the dramatic difference between the
chastic theory of turbulence~the Navier-Stokes equatio
with a random forcing included@17#! and the actual problem
From the point of view of the critical phenomena theo
problems~4! and ~5! are formulated erroneously.

Namely, interested in the long-time large scale asymp
ics behavior of correlation functions, one has to omit t
term }DMk2 ~in the momentum Fourier space! from the ac-
tion ~11! in benefit to}gUbuku. However, in this case, ther
are infinitely many Greens functions that have singularit
with respect to a general dilatation of variables, i.e., suc
theory cannot be renormalized.

One can also investigate a theory in which the both te
are included simultaneously. To our knowledge, a mo
where the concurrence between two terms~in the momentum
Fourier space! }k2 and}uku222a (0,a,1/2) was consid-
ered first in Ref. @23# in the framework of the
renormalization-group approach. It is shown that up to
valueac,1/2, a regular expansion ina and« ~the deviation
of the space dimensionality from its logarithmic value! can
be constructed and then summed over by the stan
renormalization-group procedure. The critical indices of
quantities are still fixed on their Kolmogorov’s values: t
critical dimensions of timeD t

K522/3 and velocity Dv
K

521/3 ~the dimension ofx is taken by definition asDx
521) which are well known in the fully developed turbu
lence theory~see Ref.@17# for a review!.

However, fora.1/2, and for the particular case ofa r
51/2, which we are interested in, the renormalization-gro
method fails. The matter is in new additional singularitie
which spawning in the correlation functions of the fieldu as
uku→0. Such singularities cannot be handled by the ren
malization group in principle since they do not relate to
01120
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general scaling with respect to dilatation of variables.
The summation of the leading infrared (uku→0) singulari-

ties of correlation functions can be done by an infrared p
turbation theory. If we limit ourselves to the function
uz(x,t) which have poles$z(t)% in the complex plane, then
the action of the singular operatorL is reduced to a first-
order derivative operator

L$uz%5 i sgn~ Im@z~ t !# !]xuz~x,t !, ~12!

see Ref.@9#. Then, in the momentum-frequency represen
tion, the term withL can be taken into account as a sm
shift of frequency (}g),

v→v2 igUbuku. ~13!

The infrared perturbation theory results from the expans
of expS over nonlinearities. The corresponding diagra
technique coincides with the diagram technique of Wy
@24#. The lines in the diagrams are associated with the b
propagators, in the Fourier space,

Guw5Gwu* 5
1

2 i ~v2 igUbuku!1DMk2
~14!

and

Guu5
1

2 i ~v2 igUbuku!1DMk2

3D f~k!
1

i ~v2 igUbuku!1DMk2
, ~15!

whereD f(k) is the momentum representation of Eq.~6!. For
any correlation function, this diagram technique gives an
frared representation, which is naturally consistent with thg
expansion and is well defined for small values of the para
eterg.

We are not going to discuss the application of the infra
perturbation theory to the actual problem in detail. Here,
conclude that for any pseudodifferential operator}uku222a,
0,a,1/2, the model of the type~11! has a critical regime
with the critical indices fixed at their Kolmogorov’s value
~see Ref.@23#!. However, fora>1/2, the stability of asymp-
totics is still an important open question ifg is large.

We conclude this section with a remark on the Kolmo
orov critical dimension of time in the context of the proble
in question.

The mean-squared distance of propagating flame fr
R2(t) can be expressed naturally via the linear-respo
function mentioned at the end of the previous section
follows:

R2~ t !5E dx x2^u~x,t !w~x,0!&. ~16!

The requirement that each term of the action functional
dimensionless~with respect tox andt separately! leads to the
4-3
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D. VOLCHENKOV AND R. LIMA PHYSICAL REVIEW E 64 011204
power counting relation for the product,D@uw#5d, whered
is the space dimensionality. Therefore, the power of
linear-response function is

D@^uw&#5d2d50. ~17!

We note that Eq.~17! is still valid whether a critical regime
is attained or not.

Following a tradition, we accept the natural normalizati
condition thatD@x#521, then

D@R2#522. ~18!

On the other hand, the Kolmogorov’s critical dimension
time D t

K522/3 means that

R2}t3 ~19!

~i.e., R}t3/2). One can see that the Kolmogorov critical r
gime, if it has a place in the theory~11!, would lead to the
power-law spectrumt3/2.

IV. STATISTICS OF SLOPES OF THE ADVANCING
FLAME FRONT

We are going to discuss the saddle-point configuration
Eq. ~11! which can provide us with a detailed description
the mechanism of wrinkles generation on the propaga
flame-front surface. For future purposes, it would be con
nient to perform consequently the rescaling of fields in E
~11!,

u→ u

Ub
, w→Ubw, ~20!

such that the parameterUb is removed from the nonlinea
term wuux , and then another rescaling,

u→ u

g
, Ub→

Ub

g
. ~21!

As a result of such a simple transformation, we observe
the parameter of thermal expansiong, which we assume to
be small, plays the formal role of\ in quantum-field-theory:

S→ 1

g
S. ~22!

The correlation functions of the basic fieldu are then given
by the functional integral

Gn~x1 ,t1 ;x2 ,t2 ; . . . ,xn ,tn!

5E Du Dw u~x1 ,t1!u~x2 ,t2!, . . . ,u~xn ,tn!

3expS 2
1

g
SD , ~23!
01120
e
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and can be derived naturally by means of a generating fu
tional, which has been introduced first in Ref.@25# and then
employed in Refs.@19# and @20#

Z~l![ K expS i E dt dxluD L
5E Du Dw expS 1

g H 2S1 i E dt dxluJ D . ~24!

The coefficients of the expansion ofZ in l are the correla-
tion functions~23!.

There are no general methods to compute such a fu
tional integral exactly. The straightforward perturbative a
proach is to expand the exponential in the functional integ
~24! in powers of the nonlinear termwuux . However, since
we are interested in nonperturbative effects, it seems m
natural to search for some saddle-point configurations
minimize the action functional~11!, thus dominating the
functional integral in a way similar to the saddle-point a
proximation in ordinary integrals. Such solutions are cal
instantons, and they determine the asymptotics of Eq.~24! at
small g!1, which corresponds to WKB approximation i
quantum-field-theory (\!1).

Another quantity that can be expressed via the genera
functional ~24! is the probability distribution functionP(u)
for the fieldu,

P~u!5E Dl Z~l!expS 2 i E dt dxluD . ~25!

The behavior ofP(u) for largeu is also dominated by som
saddle-point configurations of the integrand. However, th
configurations are not the same for both Eqs.~24! and ~25!.

V. KINK SOLUTIONS OF THE FORCED EQUATION
GOVERNING THE SLOPE FUNCTION DYNAMICS

In what follows we shall look for saddle-point configura
tions driven by the random force in terms of functions th
have poles in the complex planeuz(x,t). To be specific, we
observe generation of the four poles configuration from
two poles as a result of a kink. In contrast with Refs.@19#
and@20#, we need not introduce here a large artificial para
eter to fix the saddle points dominating the functional in
grals~24! and~25! since we have the inverse thermal expa
sion coefficient 1/g, which is naturally large.

Suggesting that the fieldu can be continued analytically
on the complex plane except for the poles, we shall study
correlation function of the form

G~z!5 K expFu~z!2u~z* !

g G L ~26!

of two distinct points of the complex plane symmetrical wi
respect to the real axis. We suppose also that at the in
moment of timet50 the fieldu can be depicted as a con
figuration of two complex-conjugated polesz and z* . The
function ~26! possesses a generating property: Tailoring E
~26! in powers of 1/g, one obtains the ‘‘structure functions’
4-4
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for the fieldu. The functional Fourier transform~25! of Eq.
~26! gives us the two-point probability distribution. Th
structure function generated by Eq.~26! is related to the
same pointx5Re(z) on the real axis.

Taking an average in Eq.~26! with respect to a functiona
measure, we perform an integration over all possible c
figurationsu(x,t) with the asymptote prescribed by initia
two poles and all possible final multi-pole configuration
The basic symmetry of the action~11! is the Galilean invari-
ance that reveals itself in the real transformation

ua~x,t !°u@x1Xa~ t !,t#2a~ t !, ~27!

wherea(t) is an arbitrary function oft decreasing rapidly as
utu→` andXa(t)5*0

t dt8 a(t8). The transformation~27! de-
fines an orbit in the functional space ofu along which the
result of functional averaging does not change. It follo
that the integral itself is proportional to the volume of th
orbit. This volume should be factorized before one can p
form the saddle-point calculation~see Ref.@26#!. It is appro-
priate to choose for the latter the ‘‘plane’’ transversal to t
real axis Re(z) and then cancel out the real components ou
that are related to each other via Eq.~27!. In Eq. ~26!, the
real contribution tou is subtracted out, so that it is ver
suitable for instanton calculations.

The asymptotics of smallg in Eq. ~26! is dominated by
the saddle-point configurations of the functional

W@u,w,z#5
u~z!2u~z* !

g
2S@u,w#, ~28!

which should satisfy the following equations obtained
varying Eq.~28! with respect tou andw:

ut1uux2DMuxx2
1

2
UbL$u%

52
1

2

iU b

g E dx8 D f~x2x8,t !w~y,t !, ~29!

wt1uwx1DMwxx1
1

2
UbL$w%

52
i

g
d~ t !$d~x2z!2d~x2z* !%. ~30!

These equations for the saddle-point configurations are s
lar to those derived in Ref.@19# except the last singular term
on the left-hand side. They follow from the Sivashins
equation for the slope function~4!, however they contain
information on a special force configuration necessary
produce instantons also.

Indeed, the particular solutions of Eqs.~29! and ~30! are
dependent substantially from the initial data foru and w.
Minimization of the action requiresu→0, at t→2` and
w→0, att→`. Obviously, any solution of Eq.~30! which is
nonsingular ast→1` should be equal to zero att.0 ~since
the field w feels a negative diffusivity!. Following an anal-
01120
-

.

s

r-

i-

o

ogy with Refs.@19# and @20#, one can say that the fieldw
propagates backwards in time starting from its initial valu

w~ t520!52
i

g0
$d@x2z~0!#2d@x2z* ~0!#% ~31!

while it is zero at all later moments of time. Therefore, t
system~29! and~30! as well as the integrals in Eq.~11! can
be treated fort,0 only.

While propagating backward in time, Eq.~31! is a subject
to a drift of the initial conditions as governed by the veloc
in the Eq.~30!, the smearing of the initiald-function distri-
butions in Eq.~31! due to diffusivity, and finally, an advec
tion in the complex plane, in the imaginary direction towar
the real axis. In the limit of no diffusivity, one can negle
the smearing in the Eq.~30!. A simplified equation, which
we arrive at when we drop the diffusivity term is just movin
thed-singular right-hand side of Eq.~30! around. Therefore,
the solution of Eq.~30! can be expressed naturally in th
form

w~ t !52
i

g~ t !
$d@x2z~ t !#2d†x2z* ~ t !‡% ~32!

with the boundary conditionsg(0)5g0 , z(0)5z0. If one
takes the diffusivity term in Eq.~30! into account~in the case
of eventually smallDM /gUb<1), the solution of Eq.~30!
would be expressed in terms of even functions decaying
uxu→`,

w~ t !52
i

pg~ t ! H y~ t !

y2~ t !1@x2z~ t !#2

2
y~ t !

y2~ t !1@x2z* ~ t !#2J , ~33!

where the parameter

y~ t !5
DM

g~ t !Ub
~34!

is a size of an instanton, andz(t) is its position changing
with time ~we have borrowed the terminology from th
quantum-field-theory!. As uy(t)u→0, the instanton shrinks to
a point, and the solution~33! is reduced to Eq.~32!.

To proceed with the Eq.~29!, we rewrite it due to Eq.~12!
in the form

ut1uux2DMuxx2
i

2
Ubsgn Im@z~ t !#]xuz~x,t !

52
1

2

iU b

g E dx8 D f~x2x8,t !w~y,t !. ~35!

The one-dimensional equation~35! can be linearized by the
Cole-Hopf transformation,

u~x,t !522DM

cx~x,t !

c~x,t !
, ~36!
4-5
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so that we arrive at the equation

c t2DMcxx2
i

2
Ubsgn Im@z~ t !#]xc~x,t !

52
1

2

iU b

g0
E dy Df~x2y,t !w~y,t !. ~37!

Sincew(x,t) distinguishes from zero only fort<0 andD f
}d(t), the only nontrivial contribution into the right-han
side of Eq.~37! is given by the moment of timet50. The
general solution of Eq.~37! in the Fourier space reads a
follows:

c inst~k,t !5
1

2

iU b

g0
D f~k,0!w~k,0!d~ t !, ~38!

plus a transient process decaying rapidly as time grow
}exp@2t(DMk21Ubuku)#.

Now we can use Eqs.~6! and ~33! to write down the
right-hand side of Eq.~38! explicitly,

D f~k,0!w~k,0!54p2iD 0 exp@2@y~0!1m#

3uku2 ikRe@z0##sink Im@z0#. ~39!

Performing an inverse Fourier transform of Eq.~38!, one
obtains

c inst5
D0Ub

3g0

2p F 1

~DM1g0Ubm!21g0
2Ub

2~x2z0!2

2
1

~DM1g0Ubm!21g0
2Ub

2~x2z0* !2G . ~40!

Finally, we arrive ~Ref. @27#! at the following four poles
configuration for the instantonuinst ,

uinst5
4DMx Im@z#

@~DM /g0Ub1m!21x22Im@z#2#214x2Im@z#2
d~ t !.

~41!

For the last step of instanton computation we have to de
the functionsg(t) andw(t)[Im@z(t)# in Eq. ~33! ~remem-
ber that Re@z# is fixed! as t,0. We can do it by a direc
substitution of Eq.~32! ~in case of eventually small diffusiv
ity! into Eq. ~30!. Here we note that since the instanton s
lution ~41! exists ast>0 ~if one takes the transient proce
into account!, we have to use the initial two-pole configur
tion instead ofu(x,t) in Eq. ~30!. As a result, we obtain the
system of simplified equations

2ġ~ t !5
4xDM

x21w~ t !2
g~ t !, ~42!

2ẇ~ t !5
4xDM

x21w~ t !2
w~ t !. ~43!

The formal solution of Eq.~42! is given by
01120
g,

e

-

g~ t !5g0 expS 2E
t

0 4xDM

x21w~ t8!2
dt8D , ~ t8,0! ~44!

and can be computed, in principle, if one knowsw(t). Equa-
tion ~43! is equivalent to

x

DM
ln w~ t !1

1

2xDM
w2~ t !1t5C, ~45!

which leads to

w~ t !5w0 expF2
tDM

x
2

1

2
WS e22tDM /x

x2 D G . ~46!

W(x) is the Lambert function that meets the equation

W~x!expW~x!5x. ~47!

The latter equation has an infinite number of solutions
each ~nonzero! value of x. W has an infinite number o
branches numbered by an integer numbernP@2`, . . . ,̀ #.
Exactly one of these branches is analytic at 0~the principal
branch,n50). The other branches all have a branch poin
0. The principal branch is real valued forx in the range
2exp(21), . . . ,̀ , while the image of2` . . . 2exp(21)
underW(x) is the curve2ycot(y)1yi, for yP@0, . . . ,p#.
For all the branches other than the principal branch,
branch cut dividing them is the negative real axis. The ima
of the negative real axis under the branchW(n,x) is the
curve 2ycot(y)1yi, for yP@2kp, . . . (2k11)p# if k.0
andyP@(2k11)p, . . . (2k12)p# if k,21. These curves
therefore, bound the ranges of the branches ofW, and in each
case, the upper boundary of the region is included in
range of the corresponding branch.

Each particular orbit of Eq.~46! provides a distinct solu-
tion of Eqs. ~44! and ~32!. However, each configuration
w(x,t), t,0 which enjoys Eq.~32! is related to the same
configurationu(x,t), t.0. The value of Eq.~28! for the
instanton is obviously finite, however, one can hardly co
pute it for each branch ofw(z,t).

Let us consider the principle branch of the functionw(t)
just to illustrate the idea of computation. One can check t
the leading contribution tow is accumulated aroundx50.
The asymptotic behavior ofW at complex infinity and at 0 is
given by

W~x!; log~x!2 log@ log~x!#

1 (
m,n50

`

C~m,n!
log@ log~x!# (m11)

log~x!(m1n11)
, ~48!

where log(x) denotes the principal branch of the logarithm
and the coefficientsC(m,n) are constants.

Restricting to the first term of the asymptote~48!, one
obtains

w~ t !.2w~0!DMt, ~ t,0!, ~49!

then we use Eqs.~49! and ~44! to computeg(t) as t,0,
4-6
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g.g0 expF 4

w0
tan21

w0DMt

x G , t,0. ~50!

Now it is a matter of a simple computation to find the acti
on the principal branch of the instanton. We collect eve
thing together and substitute Eqs.~50!, ~49!, ~41!, and ~32!
back to Eq.~11! to obtain

Sinst52
D0

m
expF2

2

w0
tan21w0G , ~51!

while the correlation function we have been studying is

G}expS D0

m
expF2

2

w0
tan21w0G D . ~52!

This simplified formula is obviously not an exact answer.
is just a leading asymptotic ofG(Im@z0#), if 1/g0 is a large
number,w0[Im@z0# is eventually small, however, not to
small ~since we have not taken the smearing due to diffus
ity into account!. In Fig. 1, we have plotted out both th
model curve of the asymptotics prescribed by Eq.~52! and
by the curve corresponding to the critical regime with t
Kolmogorov’s critical exponent for velocity}k21/3. It is
clear that the acceleration of flame moving through a w
channel, whose wrinkling process is driven by the pseu
random forcing, is slower than that in the Kolmogorov
critical regime.

Due to a specific property of the action~11!, the contri-
bution from fluctuations ofdw and du up to second orde
will be zero. To find higher-order corrections to Eq.~52!, one
has to consider at least the third-order terms. We investig
this problem in future publications.

FIG. 1. The comparison of the model curve of the asympto
prescribed by Eq.~52! ~the solid line! and the curve correspondin
to the nonexisting critical regime with the Kolmogorov’s critic
exponent~the dashed line!. It is clear that the acceleration of th
wrinkled flame moving through a wide channel, whose wrinkli
process is driven by the pseudorandom forcing, is slower than
in the Kolmogorov’s critical regime.
01120
-

t

-

e
-

te

VI. DISCUSSION AND CONCLUSIONS

The study performed in this paper confirms that the s
chastic model for the equation governing the slope dynam
of flames propagating in a wide channel in the regime
well-developed hydrodynamic instability demonstrates
self-fractalization of the flame front. The mechanism cons
of successive instabilities through which the interface
comes more and more wrinkled as time increases. The m
contribution to the statistics of slopes of a wrinkling flam
front propagating in a wide channel is due to a coupled fie
force configurations, which are found to be responsible
the birth and growth of wrinkles. The relevant asympto
behavior has a transient nature, and it is organized in a
quence of kinks between pole solutions for which the nu
ber of poles is constant. The acceleration of the mean fr
moving through an infinitely wide channel is clearly due
successive births of poles.

We have shown that if the critical regimes existed in t
model, thet3/2 acceleration would be a consequence of
Kolmogorov’s scaling with the critical dimensions of tim
D t

K522/3, which is well known in the fully developed tur
bulence theory.

Provided the critical regime in the model of wrinklin
flames exists, then it means that each correlation functio
the model has a definite stable long-time large scale asy
totics, which does not depend on the particular sequenc
kinks. If one replaces the nonlocal operatorL with some
pseudodifferential operator}uku222a, 0,a,1/2, then, as it
was shown in Ref.@23#, the model of the type~11! has a
critical regime with critical indices fixed at their Kolmogor
ov’s values. However, fora>1/2, the stability of asymptot-
ics is still an important open question ifg is large.

We have used the saddle-point calculations assuming
inverse thermal expansion coefficient 1/g as a large param
eter. As a result, we construct an infinite family of instant
solutions numbered bynPZ. Each instanton determined b
one of the branches of the Lambert functionW(x) has a
unique behavior ast,0 , however, all instantons are indis
tinguishable ast.0.

The crucial problem of the developed technique is of co
tribution to the action from the fluctuations against the
stanton background. The general analysis of the set of ins
tons, which we have found, will be published in
forthcoming paper.

We also note that the developed technique needs an
sential modification to be applied for the flames propagat
through finite-width channels. Actually, the new dimension
parameterL, the width of the channel, would create a ne
massive term into the action functional~11!. This can change
the results completely. On physical grounds one may exp
that the flame speed will saturate ast→` in the finite-width
channel.
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