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Instanton solutions in the problem of wrinkled flame-front dynamics
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The statistics of the slopes of wrinkling flames propagating through an infinitely wide channel is investigated
by the quantum-field-theory methods. We dwell on the WKB approximation in the functional integral, which
is analogous to the Wyld functional integral in turbulence. The main contribution to statistics is due to a
coupled field-force configuration. This configuration is related to a kink between metastable exact pole solu-
tions of the Sivashinsky equation. These kinks are responsible for both the formation of new cusps and the
rapid power-law acceleration of the mean flame front. The problem of asymptotic stability of the solutions is
discussed.
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[. INTRODUCTION Numerous analytical investigations devoted to &¢.and
to its modified version pertinent to an outward propagating
It had been shown in Ref1] that under a weakly nonlin- flame display that in the limit of long times the local flame
ear approximation, the dynamics of a wrinkled flames propaeynamics is driven by the large-scale geomé¢@y8]. Exact
gating through an infinitely wide channel is governed by asolutions of Eq(1) can be obtained in principle by using the
nonlinear partial differential equatiofPDE) pole decomposition techniqu®-11]. For such pole solu-
) 26 1 tipns, Eq.(l) formally reduces 'to a finitg set of or'dinary
) Dy — + = yU,A{ D). 1) differential equation§ODE’s) which describe the motion of
22 the poles in the complex plane. These poles are interpreted to
be related to the cusps observed in physical space. However,
Here,® is the interface of a distorted planar flanth, is the  numerical and analytical results demonstrate convincingly
speed of the planar flame relative to the buring @5%,is  that the solutions of the ODE’s do not resemble those ob-
the Markstein diffusivity, andy is the thermal expansion tained from the direct numerical integration of Ed). In
coefficient, particular, the number of wrinkles obtained from the ODE’s
(pi—pp) is independent of time and the correspondimgean expan-
y=—", (2)  sion of the front is much slower than th#& power law.

Pt In Refs.[12] and[13], it was argued that the inconsisten-
where p; is the density of the fresh mixture ang, is the cies with the pole decgmposition_ r_n.ethod lie in the stability
density of the burned gag;>py,. Equation(1) is asymp- Qf the_ exact pole solutions. The |n|t_|al value problem of the
totically exact in the limit of smally<1. A{---} represents linearized PDE about a pole solution has been solved nu-
a linear singular nonlocal operator defined conveniently inmerically; as a result they concluded that pole solutions are

b 1 I
=5Up

ot 9%

terms of the spatial Fourier transform by unstable for largey. Consequently, they are not observed in
5 B experiments.
A:D(k,t)—=27|k|D(k,t), It was conjectured in Ref.14] that nonlinearity alone is

(3  not enough to meet the experimental observations and that
the results of the spectral numerical integrations is due to
computational noise. In Refl14] a model had been devel-
oped, where pseudorandom forcing is included. It is shown

A is responsible for the Darrieus-Landau instabilizy3]. that many broad-banded exciting fields indeed lead to the

Direct numerical simulations for Eql) performed in  rapid spawning of wrinkles.

Ref.[4] show that even when the initial conditions are cho- The linear stability of the pole decomposition solutions

sen to be smooth, the cusps develop on the flame interface ams discussed in Refl5] in detail. The exact analytical

time increases. When the integration domain is wide enouglexpressions for the eigenvalues and eigenfunctions have
the secondary randomlike subwrinkles arise on the interfacdeen constructed. Based on these expressions, in| Bsf.

Experimental studies reported in R¢&] show that under they demonstrate that for any value of the paramettirere

usual experimental conditions the wrinkling process is acexists the only asymptotically stable solution with the largest

companied by the flame speed enhancement undergoing @ossible(for this particular value ofy) number of poleN,, .

acceleration in time<t%2. As the parametely increases, the equilibrium states of the

PDE undergo a cascade of bifurcations. In this way the new
solution with N poles gains stability while the former one
*Email address: volchen@cpt.univ-mrs.fr with N—1 poles becomes unstable. However, the nonlinear

CI)(k,t)zf dk ®(x,t)e?™kx,
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stability and dynamics of cusps still remain an important t9tU+UbUt9xU=DMt9>2<U+%VUbA{U}+f- (4
open question within such an approdds].
In the present paper, we consider a pseudorandom forcerhe pair-correlation function fof is taken in the form
analogue of the equation governing the slope function dy-
namics of the wrinkled flames propagated through an infi- (F(x,O)f(x",t"))=Ds(x—x")8(t—t"), (5)
nitely wide channel by the field-theory methods. We use the
pseudorandom forcing on the one hand as an origin of thé which the functionD(x—X") is supposed to be an even
spawning of wrinkles, on the other hand as a ground orsmooth “bell’-shaped function ok. To be specific, we take
application of the quantum-field-theory formalism. From theit in the form
very outset, we should stress that we address the asymptotic
solutions of thestochastic problenbased on the slope func- Do m
tion equation, but not the exact solutions of this equation. Di(x)= T2 m?
We demonstrate that the main contribution to the statistics
of slopes is given by a coupled field-force configurations—decaying at the raten and turning intoDo8(x) as m—0,
theinstantor_ls These (_:onfigqrations are related directly to AwhereD, is a constant.
very short-time (practically instant kinks between meta- Equation(4) is similar to the Burger’s equation except the
stableground _statesnc!dent to different numbers of poles. singular termg yUpA{u}. The homogeneous equation with
The paper is organized as follows. In Sec. I, we formu-pq eyernal forcing4) is considered in Ref9] in detail. In
late the stochastic problem for the equation governing th‘foarticular, it was shown that it possesses a pole decomposi-

slope function dynamics of advancing flame fronts. Thesgjo, j e it allows a countable number of uniform solutions,
fronts usually either form fractal objects with contorted and

(6)

ramified appearance or they wrinkle producing self-affine N 1

fractals characterized with some critical expongl@]. The ux,t)=—2v > ———, (7)
latter fact motivates the analysis of the problem from the iZ=N X—Z(1)

point of view of critical phenomena theory, which is given in

Sec. lll. in which z’s are poles in the complex plan@goming in

We must say that in the actual problem, thecomplex-conjugate pairsmoving according to the laws of
renormalization-group techniqu@hich has proved itself so motion of poles
well in the fully developed turbulence theory; the action
there functional resembles the action of the present theory o E 1
[17], [18]) is ultimately ineffective since, obviously, the re- 4= Vi;&j Z—z
gime of critical scaling is not attained. One can hardly use

the Concept of critical dimensions for the actual quantities. where Im denotes the imaginary part of a p0|e_ One can

The examples of successful application of the saddle pom&erive easily the corresponding steady=0), solution of

;:_alcul?t!ops tqtthe Bur?]er’s equaﬂ@lﬁ] tang tlo the deﬁ;crlp— the Sivashinsky equation for the simplest configurations con-
ion of intermittency phenomenon in turbulenf20] have cerning the minimal number of poles. For example, for two

been given recently. These papers have inspired us to em- T
ploy this technique in the problem of wrinkling flame fronts.rBOIeS the only steady solution is given by

The infinite set of instantonlike solutions we have found is

dramatically dissimilar to those computed in RgfE9] and U (x)=— 4Dux

[20]. x?+D?’
In Sec. IV, we construct the statistical theory of wrinkles

based on the action functional relevant to the actual stochagmd there are two possib|e four-po|e Steady Configurations,
tic problem.

—iyUpsgriim(z)], (8

(€)

The minimization of action discussed in Sec. V requires 4 9y3 ‘N3 ; 2
that the field and force be coupled in some particular con-  y*)(x)=+ ADm(=2x +27\/§|DM+9\/§|DMX ) .
figurations. We also illustrate the instanton mechanism of —x*+54\2iD §x=6+2iD yx*+ 81Dy},
poles generation for the particular two poles initial configu- (10
ration. The process keeps repeating itself as time increases.
We then conclude in the last section. We consider large-scale asymptotic solutions pertinent to the

field theory (11) undergoing a sequence of kinks between
different metastablground state®of the type(7).

IIl. THE STOCHASTIC PROBLEM FOR THE EQUATION To construct the solutions with spawning wrinkles, we
GOVERNING THE SLOPE FUNCTION DYNAMICS exploit the exact correspondence between an arbitrary sto-
chastic dynamical problem with the Gaussian distributed ran-

The stochastic problem for the equation governing thedom force and a quantum-field-thed®1]. A short and el-
slope function dynamics of the flame fronti(x,t) egant proof had been given in R4R2]. The stochastic
= dyP(x,t), with a Gaussian distributed pseudorandom forceproblem (4) and (5) is completely equivalent to the field
included on the right-hand-side reads as follows: theory of two fields with an action functional
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general scaling with respect to dilatation of variables.
Su,w]= %f dtdxdy wx,t)De(x—y,t)w(y,t) The summation of the leading infrarefk{— 0) singulari-
ties of correlation functions can be done by an infrared per-
, turbation theory. If we limit ourselves to the functions
_'f dthW(UtJFUbUUX_DMUXX u,(x,t) which have polegz(t)} in the complex plane, then
the action of the singular operatdr is reduced to a first-
order derivative operator

A{ud=i sgrim{z(H)])du,(x.b), (12

1
- EyubA{u}). (1D

Here, w(x,t) is the auxiliary field, which comes into play ]
instead of the random forcé w(x,t) determines the re- See Ref[9]. Then, in the momentum-frequency representa-
sponse functions of the system, for instance, the lineartion, the term withA can be taken into account as a small

response function isuw). shift of frequency ¢ v),

o—o—iyUy|K|. (13
IIl. THE ANALYSIS OF THE ACTION FUNCTIONAL
FROM THE CRITICAL PHENOMENA THEORY POINT The infrared perturbation theory results from the expansion
OF VIEW of expS over nonlinearities. The corresponding diagram

In this section, we present a brief analysis of a quantumt€chnique coincides with the diagram technique of Wyld
field-theory specified by the action function@dl) from the [24]. The Ime; in the dlqgrams are associated with the bare
critical phenomena theory point of view. Such an outlinePropagators, in the Fourier space,
appears to be important since it would shed light on a ques-
tion concerning the existence of a critical regime in the wrin- * 1
kling flame-front propagation problem, i.e., that for any cor- Cuw=Cw=——— 2 (14)

. . . - i(w—iyUp|k[)+Duk
relation function of the theoryll) there is a definite stable
large scale long-time asymptotics. and

We also stress the dramatic difference between the sto-
chastic theory of turbulencéthe Navier-Stokes equation 1
with a random forcing includefd 7]) and the actual problem. Guu=— _
From the point of view of the critical phenomena theory, —i(@—iyUplk|) +Dyk?
problems(4) and (5) are formulated erroneously.

Namely, interested in the long-time large scale asymptot- x Dy (K) 1 (15)
ics behavior of correlation functions, one has to omit the f i(w—iyUb|k|)+DMk2’
term «D,k? (in the momentum Fourier spactom the ac-
tion (11) in benefit tox yU,|k|. However, in this case, there whereD;(k) is the momentum representation of E6).. For
are infinitely many Greens functions that have singularitiesany correlation function, this diagram technique gives an in-
with respect to a general dilatation of variables, i.e., such #rared representation, which is naturally consistent withthe
theory cannot be renormalized. expansion and is well defined for small values of the param-

One can also investigate a theory in which the both termsgter .
are included simultaneously. To our knowledge, a model We are not going to discuss the application of the infrared
where the concurrence between two tefinthe momentum  perturbation theory to the actual problem in detail. Here, we
Fourier spaceeck? and «|k|?~2* (0<a<1/2) was consid- conclude that for any pseudodifferential operatdk|2~2¢,
ered first in Ref. [23] in the framework of the 0<a<1/2, the model of the typéll) has a critical regime
renormalization-group approach. It is shown that up to thewith the critical indices fixed at their Kolmogorov's values
value a;<1/2, a regular expansion im ande (the deviation  (see Ref[23]). However, fora=1/2, the stability of asymp-
of the space dimensionality from its logarithmic valw@n totics is still an important open questionyfis large.
be constructed and then summed over by the standard We conclude this section with a remark on the Kolmog-
renormalization-group procedure. The critical indices of allorov critical dimension of time in the context of the problem
quantities are still fixed on their Kolmogorov's values: the in question.
critical dimensions of timeA{=—2/3 and velocity A} The mean-squared distance of propagating flame front
=—1/3 (the dimension ofx is taken by definition as\,  R?(t) can be expressed naturally via the linear-response
= —1) which are well known in the fully developed turbu- function mentioned at the end of the previous section as
lence theory(see Ref[17] for a review. follows:

However, fora>1/2, and for the particular case of,
=1/2, which we are interested in, the renormalization-group
method fails. The matter is in new additional singularities,
which spawning in the correlation functions of the fielés
|k|—0. Such singularities cannot be handled by the renorThe requirement that each term of the action functional be
malization group in principle since they do not relate to adimensionlesgwith respect toc andt separatelyleads to the

R2(t)= f dx x2(u(x,t)w(x,0)). (16)
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power counting relation for the product[uw]=d, whered ~ and can be derived naturally by means of a generating func-
is the space dimensionality. Therefore, the power of thdional, which has been introduced first in REZ5] and then

linear-response function is employed in Refs[19] and[20]
A[(uw)]=d—d=0. an Z()\)E<exp<if dt dxnu >

We note that Eq(17) is still valid whether a critical regime 1
is attained or not. zf Dquexp(—[—SJrif dtdxm]). (29

Following a tradition, we accept the natural normalization Y
condition thatA[x]=—1, then The coefficients of the expansion &fin \ are the correla-

_ tion functions(23).
A[RT]=-2. (18) There are no general methods to compute such a func-

N ) . tional integral exactly. The straightforward perturbative ap-
On the other hand, the Kolmogorov's critical dimension of yrq4ch is to expand the exponential in the functional integral

i K_ ) . .
time Ay'= —2/3 means that (24) in powers of the nonlinear termvuu,. However, since

) 3 we are interested in nonperturbative effects, it seems more

Rt (19 natural to search for some saddle-point configurations that

_ 5 - minimize the action functiona(11), thus dominating the
(i.e., Rxt¥%). One can see that the Kolmogorov critical re- functional integral in a way similar to the saddle-point ap-
gime, if it has a place in the theoiL1), would lead to the  proximation in ordinary integrals. Such solutions are called

power-law spectrunt®Z, instantonsand they determine the asymptotics of E2{) at
small y<1, which corresponds to WKB approximation in
IV. STATISTICS OF SLOPES OF THE ADVANCING quantum-field-theory7{<1).
FLAME FRONT Another quantity that can be expressed via the generating

) _ _ ) ) functional (24) is the probability distribution functiorP(u)
We are going to discuss the saddle-point configurations ofyr the field u,

Eq. (12) which can provide us with a detailed description of

the mechanism of wrinkles generation on the propagating )

flame-front surface. For future purposes, it would be conve- P(U):J DA ZO@GXF{ _'J dtdxiu

nient to perform consequently the rescaling of fields in Eq.

(12), The behavior ofP(u) for largeu is also dominated by some
saddle-point configurations of the integrand. However, these

u configurations are not the same for both E@=l) and(25).
TR w—Upw, (20
b

. (25

V. KINK SOLUTIONS OF THE FORCED EQUATION
such that the parametéf, is removed from the nonlinear GOVERNING THE SLOPE FUNCTION DYNAMICS

termwuu,, and then another rescaling, In what follows we shall look for saddle-point configura-

tions driven by the random force in terms of functions that

u——, Up——. (21) have poles in thg complex plamg(x,t). To l_:)e spgcific, we
observe generation of the four poles configuration from the
two poles as a result of a kink. In contrast with RfE9]
As a result of such a simple transformation, we observe thaind[20], we need not introduce here a large artificial param-
the parameter of thermal expansignwhich we assume to eter to fix the saddle points dominating the functional inte-
be small, plays the formal role df in quantum-field-theory:  grals(24) and(25) since we have the inverse thermal expan-
sion coefficient 1, which is naturally large.

Suggesting that the field can be continued analytically
on the complex plane except for the poles, we shall study the
correlation function of the form

The correlation functions of the basic fieldare then given

1
S——S. (22
Y

by the functional integral G(2)= < exp{ u(2)—u(z") > 26
Y
GnlX1 X tai - - X to) of two distinct points of the complex plane symmetrical with
respect to the real axis. We suppose also that at the initial
:f DuDw u(Xy,t)U(Xz,t2), - . . U(Xn,tn) moment of timet=0 the fieldu can be depicted as a con-
figuration of two complex-conjugated polesand z*. The
v exr{ _ E S) (23) function (26) possesses a generating property: Tailoring Eq.
v (26) in powers of 14, one obtains the “structure functions”
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for the fieldu. The functional Fourier transforif25) of Eq.  ogy with Refs.[19] and[20], one can say that the field
(26) gives us the two-point probability distribution. The propagates backwards in time starting from its initial value
structure function generated by E@®6) is related to the
same poinikx=Re(z) on the real axis.

Taking an average in E@26) with respect to a functional
measure, we perform an integration over all possible con-
figurationsu(x,t) with the asymptote prescribed by initial while it is zero at all later moments of time. Therefore, the
two poles and all possible final multi-pole configurations.system(29) and(30) as well as the integrals in E(L1) can
The basic symmetry of the actidfl) is the Galilean invari- be treated fot<<O only.

ance that reveals itself in the real transformation While propagating backward in time, E@1) is a subject
to a drift of the initial conditions as governed by the velocity

in the Eq.(30), the smearing of the initiab-function distri-
butions in Eq.(31) due to diffusivity, and finally, an advec-
tion in the complex plane, in the imaginary direction towards
|t|—o0 andX,(t)=[idt’ a(t’). The transformatioi27) de-  the real axis. In the limit of no diffusivity, one can neglect
fines an orbit in the functional space ofalong which the the smearing in the E¢30). A simplified equation, which
result of functional averaging does not change. It followsWe arrive at when we drop the diffusivity term is just moving
that the integral itself is proportional to the volume of this the d-singular right-hand side of E¢30) around. Therefore,
orbit. This volume should be factorized before one can perthe solution of Eq.(30) can be expressed naturally in the

W(t=—0)=— %{JX—Z(O)]— Ax—z*(0)]} (3D

uz(x, t)y—u[x+X,(t),t]—a(t), (27

wherea(t) is an arbitrary function of decreasing rapidly as

form the saddle-point calculatidisee Ref[26)). It is appro-

priate to choose for the latter the “plane” transversal to the

real axis Ref) and then cancel out the real components of
that are related to each other via Eg7). In Eq. (26), the
real contribution tou is subtracted out, so that it is very
suitable for instanton calculations.

The asymptotics of smaly in Eq. (26) is dominated by
the saddle-point configurations of the functional

u(z)—u(z*)

5 (28)

Wu,w,z]|= —Su,wj,

which should satisfy the following equations obtained by

varying Eq.(28) with respect tau andw:

1
Ui+ Uuy,— DUy — EUbA{u}

1iU,

2

dx' Ds(x—x",t)yw(y,t), (29

1
=U bA{W}

Wi+ UWy + D Wy + >

—%5(t){5(x—z)—5(x—z*)}. (30

form

i
w(t)=— WH[X—Z(U]— dx-z*(vl} (32

with the boundary conditiong/(0)= vy, z(0)=2,. If one
takes the diffusivity term in Eq.30) into accoun{in the case
of eventually smallD,,/yU,=<1), the solution of Eq(30)
would be expressed in terms of even functions decaying as
| X[ =0,

y(t)
TY() | y2(t) +[x—2z(1)]?

w(t)=—

y(t)
- : (33
yA () +[x—2*(1)] }
where the parameter
Y= 50 (34

is a size of an instanton, am{t) is its position changing
with time (we have borrowed the terminology from the
quantum-field-theory As |y(t)|— 0, the instanton shrinks to
a point, and the solutiof83) is reduced to Eq(32).

To proceed with the Eq29), we rewrite it due to Eq(12)
in the form

These equations for the saddle-point configurations are simi-

lar to those derived in Ref19] except the last singular term

on the left-hand side. They follow from the Sivashinsky

equation for the slope functiofd), however they contain

information on a special force configuration necessary to

produce instantons also.

Indeed, the particular solutions of Eq&9) and (30) are
dependent substantially from the initial data forand w.
Minimization of the action requires—0, att— —o and
w— 0, att—o. Obviously, any solution of Eq30) which is
nonsingular as— + o should be equal to zero &t 0 (since
the fieldw feels a negative diffusivity Following an anal-

i
U Ut = DU 5 UpSgN IN 2(1) ], (X, 1)

_1liu,

=3 dx' Ds(x—x",t)w(y,t). (35

The one-dimensional equati@@5) can be linearized by the
Cole-Hopf transformation,

Pe(X,1)

u(x,t)y=—2Dy —¢(X 0

(36)
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so that we arrive at the equation 0 4xDy,
y(t)=yoex _jt

i X2+qD(t,)2

dt’), (t'<0) (49
Y1~ Dt 5 Upsgn In z(t) Jaxip(x,1)

and can be computed, in principle, if one knoy@). Equa-

1iUy tion (43) is equivalent to
=725, dy Di(x—y,t)w(y,t). (37
X
i i i i _I + 2 + = L 4
Sincew(x,t) distinguishes from zero only fdr<0 andD; Dwm ne() 2xDy e yFt=C (45)
«§(t), the only nontrivial contribution into the right-hand ]
side of Eq.(37) is given by the moment of time=0. The  Which leads to
general solution of Eq(37) in the Fourier space reads as oD/
follows: tDy 1 [e 2Pmi
p(=¢oexpg — — =W ——— (46)
1iu, X
Yinsi(k D=3 y—on(k,O)W(k,O) o), (38) W(x) is the Lambert function that meets the equation
plus a transient process decaying rapidly as time growing, W(x)expW(x)=X. 47

wexyd —t(Dyk?+UglK)].
Now we can use Eqs6) and (33) to write down the The latter equation has an infinite number of solutions for

right-hand side of Eq(38) explicitly, each (nonzerg value of x. W has an infinite number of
branches numbered by an integer numierf —, . .. o].
D¢(k,0w(k,0)=472Dqexd —[y(0)+m] Exactly one of these branches is analytic &tt@e principal

branch,n=0). The other branches all have a branch point at
0. The principal branch is real valued farin the range
Performing an inverse Fourier transform of Eg8), one  —&XP(1),... =, while the image of—o ... —exp(-1)
obtains underW(x) is the curve—ycot(y)+yi, for ye[O0, ... m].
For all the branches other than the principal branch, the
DoUﬁ“yo 1 branch cut dividing them is the negative real axis. The image
inst= of the negative real axis under the brandi{n,x) is the
27 [ (Dy+ yoUpm)*+ 75Up(x—20)? - : i
curve —ycotly)+yi, for ye[2km, ... (2ZKk+1)7] if k>0
1 andye[(2k+1)m, ... (2k+2)7] if k<—1. These curves,
- _ (40)  therefore, bound the ranges of the branche#/odnd in each
(Dy+ voUpm)2+ y%Uﬁ(x—zg)z case, the upper boundary of the region is included in the
range of the corresponding branch.
Finally, we arrive (Ref. [27]) at the following four poles Each particular orbit of Eq46) provides a distinct solu-
configuration for the instantous;, tion of Egs. (44) and (32). However, each configuration
w(x,t), t<0 which enjoys Eq(32) is related to the same
4DyxIm[z] 5(1) configurationu(x,t), t>0. The value of Eq(28) for the
[(Dy/voUp+ mM)2+x2—Im[2]2]2+ 4x2Im[ z]2 ' instanton is obviously finite, however, one can hardly com-
(41) pute it for each branch of(z,t).
Let us consider the principle branch of the functig(t)
For the last step of instanton computation we have to defingst to illustrate the idea of computation. One can check that
the functionsy(t) and ¢(t)=Im[z(t)] in Eq. (33) (remem-  the leading contribution t@ is accumulated aroung=0.

ber that Rgz] is fixed ast<0. We can do it by a direct The asymptotic behavior & at complex infinity and at 0 is
substitution of Eq(32) (in case of eventually small diffusiv-  given by

ity) into Eq.(30). Here we note that since the instanton so-
lution (41) exists as=0 (if one takes the transient process W(x)~log(x) —log[log(x) ]
into accoun), we have to use the initial two-pole configura-
tion instead ofu(x,t) in Eq. (30). As a result, we obtain the

X|k|—ikRd zg]]sink Im[z,].  (39)

Uinst™

log[ log(x)](™*+ %)

system of simplified equations +m’;:0 C(m.n) log(x)(M+n+1) ' (48)
()= Dw ¢ 42) where logk) denotes the principal branch of the logarithm,
v(= X2+ g (1)2 7, and the coefficient€(m,n) are constants.
Restricting to the first term of the asympto8), one
_ 4xDy, obtains
—p(t)=———o(1). (43
e(t) X2+ cp(t)z(P( : e(t)=—¢(0)Dyt, (t<0), (49)
The formal solution of Eq(42) is given by then we use Eqg49) and(44) to computey(t) ast<O0,
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VI. DISCUSSION AND CONCLUSIONS

The study performed in this paper confirms that the sto-
chastic model for the equation governing the slope dynamics
of flames propagating in a wide channel in the regime of
4.0t well-developed hydrodynamic instability demonstrates the

self-fractalization of the flame front. The mechanism consists
of successive instabilities through which the interface be-
comes more and more wrinkled as time increases. The main
contribution to the statistics of slopes of a wrinkling flame
front propagating in a wide channel is due to a coupled field-
force configurations, which are found to be responsible for
the birth and growth of wrinkles. The relevant asymptotic
behavior has a transient nature, and it is organized in a se-
quence of kinks between pole solutions for which the num-
: - , , . ber of poles is constant. The acceleration of the mean front
10 20 30 40 50 60 (f) moving through an infinitely wide channel is clearly due to

‘ successive births of poles.

FIG. 1. The comparison of the model curve of the asymptotics We have shown that if the critical regimes existed in the
prescribed by Eq(52) (the solid line and the curve corresponding model, thet®? acceleration would be a consequence of the
to the nonexisting critical regime with the Kolmogorov's critical Kolmogorov’s scaling with the critical dimensions of time
exponent(the dashed line It is clear that the acceleration of the Af: —2/3, which is well known in the fully developed tur-
wrinkled flame moving through a wide channel, whose wrinkling pulence theory.
process is driven by the pseudorandom forcing, is slower than that provided the critical regime in the model of wrinkling
in the Kolmogorov's critical regime. flames exists, then it means that each correlation function in
the model has a definite stable long-time large scale asymp-
totics, which does not depend on the particular sequence of
kinks. If one replaces the nonlocal operatbrwith some
pseudodifferential operator|k|?>~ 2%, 0<a<1/2, then, as it
Now it is a matter of a simple computation to find the actionwas shown in Ref[23], the model of the typg11) has a
on the principal branch of the instanton. We collect every-critical regime with critical indices fixed at their Kolmogor-
thing together and substitute E¢$0), (49), (41), and(32)  ov’s values. However, forr=1/2, the stability of asymptot-
back to Eq.(11) to obtain ics is still an important open questionjfis large.

We have used the saddle-point calculations assuming the
(51) inverse thermal expansion coeffic@erjty_lais a I_arge param-
eter. As a result, we construct an infinite family of instanton
solutions numbered by e Z. Each instanton determined by
while the correlation function we have been Studying is one Of the branches Of the Lambert functiW(X) has a
D 2 unigue behavior as<0 , however, all instantons are indis-
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The crucial problem of the developed technique is of con-
S ) ) tribution to the action from the fluctuations against the in-
_Th_ls S|mpI|f|e_d formula is _obwously not an exac_:t answer. Itgianton background. The general analysis of the set of instan-
is just a leading asymptotic @(Im[z]), if 1/yo is alarge  tons, which we have found, will be published in a
number, po=Im[zy] is eventually small, however, not too forthcoming paper.
small(since we have not taken the smearing due to diffusiv- \we also note that the developed technique needs an es-
ity into account. In Fig. 1, we have plotted out both the sential modification to be applied for the flames propagating
model curve of the asymptotics prescribed by Eip) and  tnrough finite-width channels. Actually, the new dimensional
by the curve corresponding to the critical regime with theparameterl, the width of the channel, would create a new
Kolmogorov's critical exponent for velocitys k™13 1t is ~massive term into the action functior(@ll). This can change

channel, whose wrinkling process is driven by the pseudotyat the flame speed will saturatetas in the finite-width
random forcing, is slower than that in the Kolmogorov's channel.

critical regime.
Due to a specific property of the actighl), the contri-
bgt|on from fluct_uat|o_ns ofsw and su up to second order ACKNOWLEDGMENTS
will be zero. To find higher-order corrections to E§2), one
has to consider at least the third-order terms. We investigate We would like to thank E. Khanin, M. Nalimov, and M.
this problem in future publications. Komarova for their valuable advice and discussions.
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